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Abstract

Generalized Vickrey mechanisms have received wide atten-
tion in the literature because they are efficient and strategy-
proof, i.e. truthful bidding is optimal whatever the bids of
other agents. However it is well-known that it is impossible
for an exchange, with multiple buyers and sellers, to be effi-
cient and budget-balanced, even putting strategy-proofness to
one side. A market-maker in an efficient exchange must make
more payments than it collects. We enforce budget-balance as
a hard constraint, and explore payment rules to distribute sur-
plus after an exchange clears to minimize distance to Vickrey
payments. Different rules lead to different levels of truth-
revelation and efficiency. Experimental and theoretical anal-
ysis suggest a simpleThreshold scheme, which gives surplus
to agents with payments further than a certain threshold value
from their Vickrey payments. The scheme appears able to ex-
ploit agent uncertainty about bids from other agents to reduce
manipulation and boost allocative efficiency in comparison
with other simple rules.

Introduction
The participants in an exchange, or agents, can submit both
bids, i.e. requests to buy items for no more than a bid price,
andasks, i.e. requests to sell items for at least an ask price.
Exchanges allowmultiplebuyers to trade withmultiplesell-
ers, with aggregation across bids and asks as necessary to
clear the market. An exchange might also allow agents to
express logical conditions across bundles of different items;
for example, an agent might want to buy “A andB”, or
sell “A andB, or C”. Following the literature on combi-
natorial auctions (Rothkopfet al. 1998; de Vries & Vohra
2000) we call this acombinatorial exchange. Applications
of combinatorial exchanges have been suggested to excess
steel inventory procurement (Kalagnanamet al. 2000) and
to supply chain coordination (Walshet al. 2000).

The market maker in an exchange collects bids and asks
and clears the exchange by computing: (i) a set of trades,
and (ii) the payments made and received by agents. In
designing a mechanism to compute trades and payments
we must consider the bidding strategies of self-interested
agents, i.e. rational agents that follow expected-utility max-
imizing strategies. We take as our primary goal that of
allocative-efficiency: to compute a set of trades that maxi-
mize value. In addition, we require:
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–individual-rationality(IR), or voluntary participation, such
that all agents have positive expected utility to participate.
– budget-balance(BB), such that the exchange does not run
at a loss.

Another useful property isincentive-compatibility(IC),
which states that truthful bidding (submitting bid and ask
prices equal to an agent’s value) forms a Bayesian-Nash
equilibrium. In other words, every agent can maximize
its expected utility by bidding its true values, given that
every other agent also bids truthfully. A stronger condi-
tion is strategy-proofness, such that truthful bidding is op-
timal whatever the bids of other agents. Strategy-proofness
is useful computationally because agents can avoid game-
theoretic reasoning about other agents.

Unfortunately, the well-known result of Myerson & Sat-
terthwaite (1983) demonstrates thatno exchange can be
efficient, budget-balanced (even in the average-case), and
individual-rational. This impossibility result holds with
or without incentive-compatibility1, and even in Bayesian-
Nash equilibrium. Instead, one must:
(a) impose BB and IR, and design a fairly efficient but
incentive-compatible (or perhaps strategy-proof) scheme.
(b) impose BB and IR, and design a fairly efficient and fairly
incentive-compatible scheme.

We follow (b), and design a mechanism for combinatorial
exchanges (with multi-unit and regular exchanges as spe-
cial cases) that promotes reasonable truth-revelation and rea-
sonable allocative-efficiency. The mechanism computes the
value-maximizing allocation given agent bids, and computes
payments to reduce the utility for non-truthful bidding.

Earlier authors (Myerson & Satterthwaite 1983; McAfee
1992; Barbera & Jackson 1995) have followed approach (a),
deliberately computing allocations that are inefficient for
truthful bids from agents to achieveincentive-compatibility
or strategy-proofness. We do not believe their schemes ex-
tend easily to combinatorial problems. Furthermore, we be-
lieve that our scheme is particularly useful with bounded-
rational agents with incomplete information about other
agents, because such agents are unable to fully exploit the
“holes” for manipulation that remain in our designs.

A Vickrey-Based Payment Scheme
Our particular approach takes the Vickrey payment scheme,
and adapts it to make it budget-balanced. Without the prob-

1As it must, by the revelation principle.



lem of BB, Vickrey payments support an efficient, IR, and
strategy-proof exchange.

We interpret Vickrey payments as an assignment of dis-
counts to agents after the exchange clears. BB is achieved so
long as the market maker distributes no more than the avail-
able surplus when the exchange clears. The pricing problem
is formulated as an optimization problem, to compute dis-
counts to minimize the distance to Vickrey discounts. We
derive the payment schemes that correspond to optimal so-
lutions to a number of different distance functions.

Theoretical and experimental analysis compares the util-
ity to an agent for misstating its value in bids and asks in
each payment scheme across a suite of problem instances.
The results, both theoretical and experimental, make quite
a compelling argument for a simplethreshold payment
scheme which provides discounts to agents with payments
more than a threshold distance than their Vickrey payments.

The Threshold rule increases the amount by which an
agent with a large degree of manipulation freedom must
adjust its bid to have a useful effect on the price it finally
pays, while leaving unaffected the manipulation properties
for agents with a small degree of manipulation freedom.
The effect is to reduce manipulation and boost allocative-
efficiency in comparison with other schemes.

Let us introduce an example problem, that we will return
to later in the paper.

Example. Suppose agents 1, 2, 3, 4. Agents 1 and 2 want
to sellA andB respectively, with valuesv1(A) = $10 and
v2(B) = $5. Agents 3 and 4 want to buy the bundleAB,
with valuesv3(AB) = $51 andv4(AB) = $40. The effi-
cient allocation is for agents 1 and 2 to trade with agent 3,
for a net increase in value of $36.

The mechanism design problem is: given bid and ask
prices forA, B andAB from the agents, what trades should
take place and what payments should be made and received?

Vickrey Based Surplus Distribution
The market maker in an exchange has two problems to solve:
winner determination, to determine the trades executed, and
pricing, to determine agent payments. A common goal in
winner-determination is to compute trades that maximize
surplus, the difference between bid prices and ask prices.2

These trades implement the efficient allocation with truthful
bids and asks.

The pricing problem is to determine agent payments when
the exchange clears. In this section we describe an ap-
plication of the Vickrey-Clarke-Groves pricing mechanism
(Vickrey 1961; Clarke 1971; Groves 1973) to an exchange,
which often fails BB. The presentation is for a combinato-
rial exchange, in which agents can bid and ask for bundles
of items and express logical constraints, e.g. “exclusive-or”
and “additive-or” constraints, across bids and asks.3

2The payment schemes presented in this paper are also applica-
ble with any (ex antefixed) constraint on feasible trades; e.g. any
level of aggregation in matching trades, or side constraints, e.g. on
the volume of trade or degree of dominance by a single agent.

3Vickrey payments in exchanges for homogeneous items, with
and without multi-unit bids can be derived as special cases (Wur-

Computing payments in a Vickrey-based exchange also
requires solving a number of winner-determination prob-
lems, once without each agent that trades. Winner-
determination is NP-hard for general combinatorial ex-
change problems and intractable as problems become large.
However, our current focus is on the incentive proper-
ties of novel Vickrey-based payment schemes. Tractable
winner-determination is not our present concern. This noted,
the payment schemes proposed are immediately applicable
to tractable special cases of combinatorial exchanges (see
Kalagnanam et al.) Future work should explore the ef-
fect of layering our schemes on top of approximate winner-
determination algorithms.

We first define the Vickrey payments in an exchange, and
then argue that the failure of BB is quite pervasive with Vick-
rey payments in exchanges.

Vickrey Payments

Let L denote the set of agents andG = fA;B;C; : : : g de-
note the set of items. We need notation for atrade; let
Tl 2 f�1; 0; 1gjGj denote anindicator vectorfor a trade,
such that agentl buys itemsfx j Tl(x) = 1; x 2 Gg and sells
itemsfx j Tl(x) = �1; x 2 Gg. LetT = (T1; : : : ; TjLj)
denote a complete trade between all agents.

Bids and asks define areportedvalue,v̂l(Tl) for a trade
Tl, comprising buys and sells. Bids indicate positive value
for buying a bundle of items, while asks indicate negative
value for selling a bundle of items. For example, if agent
1 submits bid(AB; 10) and ask(C; 5), thenv̂1([1; 1; 0]) =
10; v̂1([0; 0;�1]) = �5; v̂1([1; 1;�1]) = 5. The values for
other trades are constructed to be consistent with value�1
for selling anything other than itemC, zero value for buying
S � fABg, and no additional value for buying more than
bundleAB.

LetT� denote the value-maximizing trade, given reported
values,v̂l(Tl), from each agent, with total surplusV � =P

l v̂l(T
�
l ). Trades must befeasible, so that supply and

demand is balanced, given a model of aggregation. Also,
let (V�l)� denote surplus from the value-maximizing trade
withoutbids (or asks) from agentl.

By definition, the Vickrey payment to agentl is computed
as:

pvick;l = (V�l)
� � V �

�l

whereV �
�l is the value of tradeT� to all agents except agent

l, i.e. V �
�l = V � � v̂l(T

�
l ). Negative paymentspvick;l < 0

indicate that the agentreceivesmoney from the exchange
after it clears.

We can express an agent’s Vickrey payment as a discount,
�vick;l, from the payment,̂vl(T �l ), the agent would make
given its bid and ask prices; i.e.pvick;l = v̂l(T

�
l )��vick;l,

where theVickrey discountis computed as:

�vick;l = V � � (V�l)
�

The Vickrey discount is always non-negative, representing
smaller payments by buyers and higher payments to sellers.

manet al. 1998).



Economic Properties. Vickrey payments are IR, because
V � � (V�l)

� by a simple feasibility argument, and also
strategy-proof. The proof of strategy-proofness is omitted
due to lack of space, but closely follows standard Vickrey
proofs, for example see Varian & MacKie-Mason (1995).
However, BB will often fail in an exchange, as we show in
the next section.

Vickrey Budget-Balance: Success & Failure
Now that we have defined Vickrey payments in a combina-
torial exchange, let us outline some cases in which BB is
achieved and some cases in which BB fails. We will see
that budget-balance failure is quite pervasive with Vickrey
payments in exchanges.

Standard Exchange. First, consider a standard exchange
with bids and asks for single units of a homogeneous item.
In this case the exchange is cleared by sorting bids in order
of decreasing price and asks in order of increasing price.
Bids are matched with asks while the bid price is greater
than the ask price. It is well known that Vickrey payments
are not BB in this environment.

Let p0bid denote the smallest successful bid andp�1bid de-
note the largest unsuccessful bid. Similarly, letp0ask de-
note the largest successful ask andp�1ask denote the small-
est unsuccessful ask. In the Vickrey scheme, every win-
ning seller receives paymentpvick;sell = min(p0bid ; p

�1
ask ),

whatever its own ask price, and every winning buyer pays
pvick;buy = max(p0ask ; p

�1
bid), whatever its own bid price.

The following condition is required for BB:

Claim 1. Budget-balance is achieved in a simple exchange
for homogeneous items and single-item bids and asks if and
only if one (or more) of the following conditions hold: (1)
p0bid = p0ask ; (2) p0bid = p�1bid ; (3) p0ask = p�1ask .

Proof sketch.BB holds if and only ifmax(p0ask ; p
�1
bid) �

min(p0bid ; p
�1
ask ), leading to cases: (1)p0ask � p�1bid and

p0bid � p�1ask ; (2) p0ask < p�1bid and p0bid � p�1ask ; (3)
p0ask � p�1bid andp0bid > p�1ask .

In other words, either one or more of the supply or de-
mand curves must be “smooth” at the clearing point, with
the first excluded bid at approximately the same bid price as
the last accepted bid,or the winning bid and ask prices must
precisely coincide. Thus, we cannot expect BB with Vickrey
payments even in a standard (non-combinatorial) exchange
except in special cases.

Combinatorial Exchange As an example of BB failure,
consider that agents submit truthful bids in the earlier exam-
ple; i.e. asks (A, $10), (B, $5) and bids (AB, $51), (AB,
$40). V � = 51 � 10 � 5 = 36, (V�1)� = (V�2)

� = 0,
(V�3)

� = 25, and(V�4)� = 36. Agent 1’s Vickrey pay-
ment is -10 - (36 - 0) = -46, agent 2’s is -5 - (36 - 0) = -41,
agent 3’s is 51 - (36 - 25) = 40. The exchange runs at a loss
of $47 to the market maker.

One-Sided Vickrey-Payments First, a positive special-
case. Claim 2 gives a sufficient condition for BB in the
special-case that Vickrey discounts are only allocated to

agents on one-side of an exchange, i.e. to all buyers or to
all sellers (but not to buyers and sellers).

We defineaggregationon the sell-side as when bids from
multiple buyers can be combined to match an ask from a
single seller, and aggregation on the buy-side as when asks
from multiple sellers can be combined to match a bid from
a single buyer.

Claim 2. Budget-balance holds if Vickrey payments are im-
plemented on one-side of an exchange, and when that side
has no aggregation.

Proof sketch. Simple, just show that this BB holds for
each “cluster” of trading agents, and therefore for the entire
exchange.

Bilateral matching is a special-case, with no aggregation
on either side; i.e. Vickrey payments are budget-balanced
if implemented for at most one agent in each trade, for
example with trades cleared at either the ask price (buy-
side strategy-proofness) or the bid price (sell-side strategy-
proofness). Similarly, the single-item Vickrey auction is a
special case (and strategy-proof to buyers but not the seller).

The Generalized Vickrey Auction (GVA) is the VCG
mechanism for a combinatorial auction, in which there is
a single seller and sell-side aggregation. The GVA is BB
because the buyers, but not the seller, receive Vickrey pay-
ments. The auctioneer simply collects the total payment
made by the buyers and passes it on to the seller. As such the
GVA is strategy-proof for buyers but not for the seller. An-
other problem is that the seller can sometimes receive less
than her ask price. Consider a seller with an ask price of
(AB, $10) and bids of (A, $8) and (B, $8) from different
buyers. Each buyer receives Vickrey discount $6 and pays
$2, but the seller needs at least $10.

One-to-N models We can state a general negative result
for Vickrey payments to all agents (buyers and sellers) in a
combinatorial auction.

Claim 3. Budget-balance fails with Vickrey payments to all
agents in a combinatorial auction except in the case that no
buyer requires a Vickrey discount.

Proof sketch. Simple, just show that the seller extracts
all of the surplus as its Vickrey discount.

Intuitively, BB fails in this case unless the marginal value
contributed by each buyer is zero, i.e. unless the surplus
in the exchange is the same with any one of the buyers re-
moved.

Budget-Balanced Payment Rules
In this section we take BB and IR as hard constraints and
propose methods to distribute surplus when an exchange
clears to minimize the distance between discounts and Vick-
rey discounts. The choice of distance function has a distri-
butional effect on the allocation of surplus and changes the
incentive-compatibility properties of the exchange. In a later
section we demonstrate useful truth-revelation properties for
the Vickrey-based schemes.

We do the following:



� Formulate the pricing problem as a mathematical pro-
gram, to minimize the distance to Vickrey payments with
BB and IR as hard constraints.

� Introduce possible distance functions and construct corre-
sponding budget-balanced payment schemes.

� Present a theoretical analysis of each payment scheme in
a simple bidding model.

Mathematical Programming Model
We formulate the pricing problem as a linear program, to as-
sign surplus to agents to minimize distance to Vickrey dis-
counts. LetV � denote the available surplus when the ex-
change clears, before any discounts, andL� � L denote the
set of agents that trade. Each agent may perform a number
of buys and sells, depending on its bids and asks of other
agents. We compute discounts� = (�1; : : : ;�L) to min-
imize the distanceL(�;�vick) to Vickrey discounts, for a
suitable distance functionL .

min
�

L(�;�vick) [PP]

s.t.
X
l2L�

�l � V � (BB)

�l � �vick;l ;8 l 2 L� (VD)

�l � 0 ;8 l 2 L� (IR)

Constraint (BB) gives worst-case (or ex post) budget-
balance, such that the exchange never makes a net payment
to agents. We might also substitute an expected surplus
V � for V � and implement average-case (or ex ante) budget-
balance. Constraints (IR) ensure that truthful bids and asks
are individual-rational for an agent, with a worst-case (or ex
post) non-negative expected utility. Constraints (VD) ensure
that no agent receives more than its Vickrey discount.4

In addition to the standardL2 and L1 distance met-
rics, we also consider the following functions: (a)
LRE(�;�vick) =

P
l

�vick;l��l

�vick;l
, a relative error function;

(b) L�(�;�vick) =
Q

l

�vick;l

�l
, a product error function;

(c) LRE2(�;�vick) =
P

l

(�vick;l��l)
2

�vick;l
, a squared relative

error function; (d)LWE(�;�vick) =
P

l�vick;l(�vick;l �
�l), a weighted error function. TheL1 metric provides no
distributional information.

We drop agents with�vick;l = 0 from all models, and
simply set�l = 0 for these agents.

Payment Rules Rather than solving problem [PP] di-
rectly, we can compute an analytic expression for the family
of solutions that correspond to each distance function. Each
family of solutions is a parameterizedpayment rule. For ex-
ample, theThresholdrule, �l = max(0;�vick;l � C) for
some parameterC � 0, solves [PP] for theL2 distance met-
ric. For largeC, Threshold allocates small, or no, discounts,
while forC = 0 Threshold allocates Vickrey discounts.

To understand the construction of Threshold fromL2 con-
sider the simplest case, when constraints (VD) and (IR) are

4The (VD) constraints are not redundant for certain distance
metrics, such as theLRE(�) metric.

Distance Function Payment Scheme Discount Definition
L2, L1 Threshold max(0;�vick;l � C)

LRE Small �vick;l if �vick;l � C
LRE2 Fractional ��vick;l

LWE Large �vick;l if �vick;l � C
L� Reverse min(�vick;l; C)
- No-Discount 0
- Equal D

Table 1:Distance Functions and Payment Schemes.

Rule Vick Equal Frac Thresh Reverse Large Small
Agent 1 -46 -22 -25.6 -28 -22.5 -46 or -10 -35 or -10
Agent 2 -41 -17 -20.6 -23 -17.5 -5 -41 -5 -30
Agent 3 40 39 46.2 51 40 51 51 40 40

Table 2:Payments with Different Rules in the Simple Problem.

not binding, and perform Lagrangian optimization. Drop-
ping the outer square root from theL2 metric and introduc-
ing Lagrange multiplier� � 0, we havemin

P
l(�vick;l �

�l)
2 + �(

P
l�l � V �). Now, computing first derivatives

w.r.t.�l and setting to zero, we have�2(�vick;l��l)+� =
0 for all l.5 Solving, this equates the distance to Vickrey dis-
counts across all agents,�vick;1 � �1 = �vick;2 � �2 =
: : : , and with budget-balance we find�l = �vick;l �
(
P

l0 �vick;l0 � V �)=jL�j. This is the Threshold rule with
parameterC = (

P
l�vick;l � V �)=jL�j = �=2.

Table 1 tabulates the payment rules for each distance func-
tion, and also includes theEqualrule which is not Vickrey-
based but divides surplus equally across all agents, and the
No-Discountrule (see also Figure 1). Each payment rule is
parameterized withC�0, except forFractional, which has
parameter0� �� 1. The parameters that give BB in each
scheme can be easily computed from Vickrey discounts and
available surplus.

Example. In Table 2 we compare the payments made with
each payment scheme in our simple problem. Notice that
neither the Large or Small schemes provide useful guidance
about how to distribute the discount across the two sellers,
this depends on how the tie is broken.

Theoretical Analysis
In this section we develop simple analytic results for the
amount of manipulation an agent will perform with each
payment scheme. The model permits tractable analysis, and
proves interesting both for the insight it provides and for the
close correspondence that we find with later experimental
results for combinatorial exchange problems.

We choose to analyze an exchange in which bids and asks
are forsingle items. Later, in our experimental analysis we
compare the payment schemes in combinatorial problems.

For buyers (the analysis is symmetric for sellers):
(1) Every agentl has valuevl for a single item (drawn
from some distributionFl(v)) and chooses to manipulate by

5First-order conditions are necessary and sufficient for optimal-
ity in this problem because the Hessian is positive definite.
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Figure 1:Bid pricebl (x-axis) against adjusted bid pricebl ��l

(y-axis) in each payment scheme. Agent valuev, highest outside
bid x, Payment scheme parametersC, �, D.

�l � 0, and bidbl=vl��l.
(2) The maximum bidxl from another agent for the item,
or ask price (whichever is higher), is uniformly distributed
aboutvl, i.e. xl�U(vl��; vl+�) for some constant,�>0.
(3) The average surplus available to the market maker when
the exchange clears is�� per-agent, for some constant� > 0
that defines the amount of surplus.
(4) In equilibrium, the market maker selects a parameter
(e.g. C) for the payment scheme to achieve average-case
budget-balance. Payment rules are computedbeforeagents
bid, and the parameters are known to bidding agents.

Agentl has a quasi-linear utility function,ul=vl� p, for
submitting the highest bid wherep is its payment to the ex-
change, i.e.p = bl ��l. Figure 1 illustrates each payment
rule in this simple model, plotting bid pricebl against ad-
justed pricebl � �l; e.g., in Vickrey the agent pays onlyx
for any bidbl � x, in Threshold the agent paysbl = x+ C
for bl � x+C, andbl for x � bl < x+C, given parameter
C, etc.

For each payment scheme we determine: (a) an agent’s
optimal bidding strategy as a function of the parameters of
the rule, e.g.C or �; and (b) the equilibrium parameteriza-
tion of the rule, e.g. value forC, that leads to budget-balance
given that agents follow this optimal bidding strategy. The
analysis leads to a relationship between theavailable sur-
plus and the degree of manipulationfor each payment rule
(see Figure 4).

One can be critical of our assumptions. We leave un-
defined both the valuation distribution functionsFl(v) and
the distribution that defines the item an individual agent
values. It is quite likely that there are noFl(v) that are
consistent with our assumption of a uniformly distributed
second-highest bid in equilibrium. In addition, we adopt
average-case budget-balance and compute payment rules be-
fore agents bid, but ignore any effect that rules have on sur-
plus via agents’ bidding strategies.

However, we believe that this analysis has significant
value. Its main success is that it clearly demonstrates the
effect that different types of budget-balanced Vickrey-based
payment rules can have on agent manipulation. We leave a

full equilibrium analysis for future work.

Graphical Intuition. Manipulation has two effects on the
expected utility for an agent: (i) the probability of the ad-
justed bid being accepted decreases, and (ii) the total utility
if the bid is accepted can go up because the agent’s payment
might be reduced. Payment rules change (ii) but not (i), and
in turn effect agents’ bids and the efficiency of the exchange.

In Figure 2 we plot theutility for a particular bid,b =
v��, as the value of the outside bidx varies, for payment
schemes Vickrey, No-Discount, Threshold and Fractional.
Each subplot is for a single scheme, with individual curves
corresponding to different bids.6
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Figure 2:Utility of bids b = v� � with � = f0; 0:3; 0:5g, v = 1,
as the best outside bidx varies between0 and 1. C = 0:4 in
Threshold, and� = 0:5 in Fractional.

In the Vickrey scheme a lower bid reduces the agent’s ex-
pected utility because it decreases the probability of success
without increasing the utility of a successful bid. In compar-
ison, with no discount the agent gains utility on all success-
ful bids by the amount of deviation from truthful bidding.
In the Threshold scheme a lower bid only reduces the price
paid for a limited range of outside bids (closer thanC to the
bid price), while in the Fractional scheme a lower bid re-
duces the price paid on all successful bids (but by less than
in the No Discount scheme).

Making our assumption about the distribution ofx around
an agent’s valuevl, we can compute the expected utility for
different levels of manipulation under each scheme as the
area under a particular curve in a plot like Figure 2.7 The
expected-utility maximizing bid corresponds to the curve
with maximum area. In Figure 3 we plot the expectedgainin
utility (in comparison with truthful bidding),Eu(�)�Eu(0),
for bid b = v� � in each payment rule. Rule parameters are
set to give BB with surplus� = 0:1 at optimal agent strate-

6Although not plotted here, the curves for Equal are similar to
the No-Discount case (except shifted higher in utility by a constant
amount), and Large is similar to Threshold.

7It is at this stage that an equilibrium analysis would need to
use a derived expression for the distribution ofx.
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Figure 3: Expected Gain in Utility for different bidsb = v � �
under each payment scheme, with rule parameters set to give BB
with surplus� = 0:1.

gies. Notice that the level of manipulation,��, that maxi-
mizes the agent’s gain in utility is smallest in the Threshold
scheme for this value of surplus.

The results (below) show that the Large and Threshold
rules perform well in this model, and lead to the following
intuitive remarks about payment rules (see Figure 1):
1. A large flat section for bids close to the agent’s true value
is useful, i.e. with adjusted bid price independent of the
agent’s bid price.
2. Nowhere should the adjusted bid price be greater than the
agent’s bid price (for IR with truthful bidding), which con-
strains the line to lie to the right of the “no-discount” line.
3. It is more important to implement the flat section for val-
ues,v, far from the highest outside bid,x, than values close
to the highest outside bid (i.e.Large rather thanSmall),
because manipulation is already more risky for true values
close tov than far fromx.8

It is useful to think about the “degree of manipulation
freedom” available to an agent, which in this simple single-
bundle model is the difference between an agent’s valuev
and the highest outside bidx. In general, this is simply mea-
sured by the Vickrey discount to an agent that bids truth-
fully, i.e. the amount by which it could have reduced its bid
price and still participated in the same trades. The Large and
Threshold schemes are effective because they make manipu-
lation more difficult and less useful for an agent with a large
degree of manipulation freedom, while leaving the ability to
manipulate of agents with a small degree of manipulation
freedom unchanged. This is a good incentive strategy be-
cause it attacks the “low risk” manipulation opportunities,
but leaves the “high risk” opportunities. Agents are uncer-
tain about the bids from other agents and always run the risk
of bidding too low and forfeiting a profitable trade.

Results. Table 3 summarizes the analytical results, giving
an agent’s optimal bidding strategy,��, as a function of the
parameter in each scheme, and the expected discount per-

8Note that in terms of efficiency the picture is mixed. While we
can stand more manipulation from agents with large values com-
pared tox, without changing the trades that we implement, if the
bids from those agents does change the final implementation the
effect on efficiency is likely to be quite large.

Rule Optimal Manipulation,�� Expected Discount
No-Discount �=2 0

Vickrey 0 �=4

Fractional max
h
0;
�
1��
2��

�
�
i

min
h
�=4; ��

4(2��)2

i

Threshold min [C; �=2] max
h
0; (��2C)

2

4�

i

Equal ��D
2

D(�+D)
4�

Small max [0;min (�=2; � � C)] min
�
�=4; C2=4�

�
Large 0, ifC � �=

p
2 �C2=4� + �=4, if C � �=

p
2

�=2, otherwise 0, otherwise
Reverse max

�
0; ��C

2

�
min [�=4; C=4]

Table 3:Analytical results.
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Figure 4:Optimal agent manipulation,��(�), (as a proportion of
�) under each payment scheme as the amount of available surplus
increases from 0 to�=2 per-agent.

agent given that optimal strategy.9 We present an example
derivation, for the Threshold rule, below.

In Figure 4 we enforce BB, computing parameters in the
payment schemes to set the expected discount equal to sur-
plus��, and plot the equilibrium manipulation performed in
each payment scheme as the amount of surplus varies. The
Vickrey payment scheme can be implemented with surplus
�=4 per-agent, so all schemes except Equal and No-Discount
prevent manipulation completely for� � 0:25. For smaller
amounts of surplus the market maker is forced to deviate
from Vickrey, and move left in Figure 4. At� = 0 no
schemes can provide any discount, and the agent manipu-
lates by�=2.

First, notice that the simple minded Equal scheme ap-
pears to have bad incentive properties. In fact, the Threshold
method dominates all other schemes in this model except
Large. Large has an interesting bad-good phase transition
at � = 1=8, and can prevent manipulation completely for
1=8 � � � 1=4 even though agents with small Vickrey dis-
counts might have benefited from manipulation with hind-
sight. Agent uncertainty coupled with the risk of bidding too
low and either falling from the flat section or under-bidding
the highest outside bid lead agents to bid truthfully.

9It is useful to confirm that all expressions reduce to that for the
Vickrey and No-Discount rules at extreme parameter values (e.g.
� = f0; 1g in Fractional,C = f0; �=2g in Threshold, etc.)



Example Derivation: Threshold Rule. Each agent re-
ceives discountmax(0; b� (x + C)), for some constant
C > 0. The agent’s utility given bidv � �, valuev, highest
outside bidx, and ThresholdC, is computed as:

u(v��; v; x; C) =
(

v�(x+ C); if v�� � x+ C
v�(v��); if x+ C > v�� � x
0; otherwise

Assume thatC � �, so that the agent will receive a dis-
count for some choice of� < �. Consider three cases.
Case (1), � � ��C. The expected utility for bid� givenC,
EU(�; C) is:

v���CZ
x=v��

[v�(x+ C)]f(x)dx +

v��Z
x=v���C

[v�(v��)]f(x)dx +

v+�Z
x=v��

0f(x)dx

=
(����C)

2�
(v�C)� 1

4�

�
(v���C)2�(v��)2�+ �

2�
(� + C��)

In case (2), ��C<���,EU(�; C) =
v��R

x=v��

[v�(v��)]f(x)dx =

�(���)=2�. In Case (3), � < �, thenEU(�; C) = 0. ¿From
this, the agent’s optimal bidding strategy, denoted��(C), by
differentiation w.r.t.� and case analysis, is:

��(C) = min [C; �=2]

The discount to the agent for bidb = v� � is: �(v �
�; v; x; C) = max [0; v���(x+ C)]. The expected dis-
count, first in the case that� � � � C, is:

E�(�; C) =

v���CZ
x=v��

[v � ��(x+ C)]f(x)dx

= (v � � � C)
(� � � � C)

2�
� 1

4�

�
(v � � � C)2�(v � �)2

�
or E�(�; C) = 0 in the case� > ��C. Substituting
for the agent’s optimal bidding strategy��(C) we have:

E�(��(C); C) = max
h
0; (��2C)

2

4�

i
. Now, with per-agent

surplus�� and budget-balance, such thatE��(C) � ��,
the exchange should setC�(�) = min

�
0; �4

�
2�p16� ��

to minimize manipulation.

Experimental Analysis
In this section we provide an experimental analysis of the
payment schemes in a set of combinatorial problem in-
stances. Agents are either buyers or sellers, and values
are assigned to agents forbundlesfollowing the Random,
Weighted Random, Decay, and Uniform distributions from
Sandholm (1999), adapted in this case to a combinatorial
exchange. Each agent submits bids (asks) for multiple bun-
dles, with exclusive-or constraints across bids (asks). We
test problems with 5, 10, and 20 agents, a total of 100 bids
and asks (evenly distributed across agents), 50 goods, and
with different proportions of buyers and sellers.10

10Results are averaged over 80 problem instances, for numbers
of Buyer/Sellers2 f5=5; 7=3; 2=3; 4=1; 10=10; 15=5g.
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Figure 5: Average Single-Agent Gain in Utility from manipula-
tion byy% (vs. truthful bidding), in a system in which every other
agent manipulates byy%. Problem size: 5 buyers/5 sellers.

In our theoretical model we adopted average-case budget-
balance to make the analysis tractable. We now revert to
the more natural worst-case (or every-time) budget-balance
in which the market maker distributes exactly the available
surplus every time the exchange is cleared. Payment rules
are now computedafterbids are received.

We perform a limited strategic analysis. First, we assume
that the strategy of agentl is to adjustall its bids and asks by
the same fractional amount,yl %, i.e. submitting bid prices
yl% below value and ask pricesyl% above value. Second,
we look for asymmetricNash equilibrium in which every
agent follows the same strategy, for somey%. Finally, we
compute anapproximationto this equilibrium for computa-
tional tractability. We compute the average utility gain to a
single agent for 0% vs.y% manipulation, given that every
other agent manipulates byy%, and determine the amount
of manipulation,y�, that maximizes this utility gain. We as-
sume that this is also the optimal strategy for an individual
agent against a population of agents withfixedstrategiesy�,
and therefore the Nash equilibrium.11

Given this, we read off the symmetric Nash equilibrium
under a particular payment rule as the peak of a plot such as
that in Figure 5, which plots the gain in utility for strategy
y% vs. 0% in a system in which every agent follows strat-
egyy%, in this case for the 5 buyers/5 sellers problem set.
In this case, notice that the equilibrium manipulation level
in Large and Threshold is less than under the other rules,
in this case around 10% and 20% in Large and Threshold,
compared with 30%, 40% and 50% in Fractional, Equal and
No-Discount. In addition, the amount of utility gain in Large
and Threshold is much less than in the other schemes.

In Table 4 we summarize the results of experiments across
all problem sets. We compare: the average utility gain, and
the correlation with Vickrey discounts, at manipulation lev-
els of 10%, 20% and 30% in each scheme; and the average
optimal degree of manipulation by agents in each scheme,

11One benefit of this technique is that we have a method to mea-
sure the degree of manipulation even when there is in factno sym-
metric pure Nash equilibrium.



No-Discount Vickrey Small Frac
Utility Gain 0.799 -0.195 0.479 0.211
Correlation 0.053 1.0 0.356 0.590

Manipulation,�� 48 0 48 32
Efficiency (%) 58 100 58 78

Threshold Equal Large Reverse
Utility Gain 0.110 0.516 0.029 0.337
Correlation 0.543 0.356 0.176 0.522

Manipulation,�� 22 46 18 44
Efficiency (%) 86 62 88 64

Table 4: Experimental results. Utility gain and Correlation with
Vickrey discounts computed for manip. 10%, 20% and 30%, and
averaged over all problem instances (for 5–20 agents).

and the corresponding allocative efficiency. The allocative
efficiency in the Large and Threshold schemes is consider-
ably higher than in the other schemes.

Discussion
The partial orderingfLarge, Thresholdg� Fractional�Re-
verse� fEqual, Smallg from the experimental results is re-
markably consistent with the results of our theoretical anal-
ysis. Although the Large scheme generates slightly less ma-
nipulation and higher allocative efficiency than Threshold,
the correlation between discounts and Vickrey discounts is
much greater in Threshold than Large. An agent’s discount
in Large is very sensitive to its bid, and we expect Large
to be less robust than Threshold in practice because of this
all-or-nothing characteristic.

As discussed earlier, we have made a number of assump-
tions, both in the analytic models of agent manipulation
and also in the manipulation structure considered experi-
mentally. In addition to understanding the effects of these
assumptions, in future work we would also like to: quan-
tify worst-case and average-case utility gains from manipu-
lation in each payment scheme, given a particular amount of
surplus; and deriveoptimalpayment schemes, for example
minimizing worst-case gains from manipulation. One av-
enue is to ask how bad would the efficiency get if every agent
was perfectly informed about the other agents, and followed
a best-possible bidding strategy given the payment rules. Fi-
nally, we suspect that stochastic payment rules might prove
to have interesting incentive properties.

Conclusions
We constructed budget-balanced payment schemes to min-
imize different distance functions to Vickrey payments,
and showed analytically and experimentally that a simple
Threshold rule has better incentive properties than other pay-
ment schemes. The effect of the payment scheme is to im-
plement a distribution of manipulation-preventing discounts
across a population of agents to exploit an agent’s inherent
uncertainty about bids from other agents and the degree to
which manipulation can be useful. The Threshold rule in-
creases the amount by which an agent with a large degree
of manipulation freedom must adjust its bid to have a useful
effect on the price it finally pays, while leaving unaffected

the manipulation properties for agents with a small degree
of manipulation freedom.

Finally, we note that the schemes outlined here can also
allow a market maker to make a small profit by taking a
sliver of budget-balance, or used in combination with a par-
ticipation charge to move payments closer to Vickrey pay-
ments.
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